28 research outputs found

    First report from the German COVID-19 autopsy registry

    Get PDF
    BACKGROUND: Autopsies are an important tool in medicine, dissecting disease pathophysiology and causes of death. In COVID-19, autopsies revealed e.g., the effects on pulmonary (micro)vasculature or the nervous system, systemic viral spread, or the interplay with the immune system. To facilitate multicentre autopsy-based studies and provide a central hub supporting autopsy centres, researchers, and data analyses and reporting, in April 2020 the German COVID-19 Autopsy Registry (DeRegCOVID) was launched. METHODS: The electronic registry uses a web-based electronic case report form. Participation is voluntary and biomaterial remains at the respective site (decentralized biobanking). As of October 2021, the registry included N=1129 autopsy cases, with 69271 single data points including information on 18674 available biospecimens gathered from 29 German sites. FINDINGS: In the N=1095 eligible records, the male-to-female ratio was 1·8:1, with peaks at 65-69 and 80-84 years in males and >85 years in females. The analysis of the chain of events directly leading to death revealed COVID-19 as the underlying cause of death in 86% of the autopsy cases, whereas in 14% COVID-19 was a concomitant disease. The most common immediate cause of death was diffuse alveolar damage, followed by multi-organ failure. The registry supports several scientific projects, public outreach and provides reports to the federal health authorities, leading to legislative adaptation of the German Infection Protection Act, facilitating the performance of autopsies during pandemics. INTERPRETATION: A national autopsy registry can provide multicentre quantitative information on COVID-19 deaths on a national level, supporting medical research, political decision-making and public discussion. FUNDING: German Federal Ministries of Education and Research and Health. Hintergrund: Obduktionen sind ein wichtiges Instrument in der Medizin, um die Pathophysiologie von Krankheiten und Todesursachen zu untersuchen. Im Rahmen von COVID-19 wurden durch Obduktionen z.B. die Auswirkungen auf die pulmonale Mikrovaskulatur, das Nervensystem, die systemische Virusausbreitung, und das Zusammenspiel mit dem Immunsystem untersucht. Um multizentrische, auf Obduktionen basierende Studien zu erleichtern und eine zentrale Anlaufstelle zu schaffen, die Obduktionszentren, Forscher sowie Datenanalysen und -berichte unterstĂŒtzt, wurde im April 2020 das deutsche COVID-19-Autopsieregister (DeRegCOVID) ins Leben gerufen. Methoden: Das elektronische Register verwendet ein webbasiertes elektronisches Fallberichtsformular. Die Teilnahme ist freiwillig und das Biomaterial verbleibt am jeweiligen Standort (dezentrales Biobanking). Im Oktober 2021 umfasste das Register N=1129 ObduktionsfĂ€lle mit 69271 einzelnen Datenpunkten, die Informationen ĂŒber 18674 verfĂŒgbare Bioproben enthielten, die von 29 deutschen Standorten gesammelt wurden. Ergebnisse: In den N=1095 ausgewerteten DatensĂ€tzen betrug das VerhĂ€ltnis von MĂ€nnern zu Frauen 1,8:1 mit Spitzenwerten bei 65-69 und 80-84 Jahren bei MĂ€nnern und >85 Jahren bei Frauen. Die Analyse der Sequenz der unmittelbar zum Tod fĂŒhrenden Ereignisse ergab, dass in 86 % der ObduktionsfĂ€lle COVID-19 die zugrunde liegende Todesursache war, wĂ€hrend in 14 % der FĂ€lle COVID-19 eine Begleiterkrankung war. Die hĂ€ufigste unmittelbare Todesursache war der diffuse Alveolarschaden, gefolgt von Multiorganversagen. Das Register unterstĂŒtzt mehrere wissenschaftliche Projekte, die Öffentlichkeitsarbeit und liefert Berichte an die Bundesgesundheitsbehörden, was zu einer Anpassung des deutschen Infektionsschutzgesetzes fĂŒhrte und die DurchfĂŒhrung von Obduktionen in Pandemien erleichtert. Interpretation: Ein nationales Obduktionsregister kann multizentrische quantitative Informationen ĂŒber COVID-19-TodesfĂ€lle auf nationaler Ebene liefern und damit die medizinische Forschung, die politische Entscheidungsfindung und die öffentliche Diskussion unterstĂŒtzen. Finanzierung: Bundesministerien fĂŒr Bildung und Forschung und fĂŒr Gesundheit

    Intracranial hemorrhage in COVID-19 patients during extracorporeal membrane oxygenation for acute respiratory failure: a nationwide register study report

    Get PDF
    BACKGROUND: In severe cases, SARS-CoV-2 infection leads to acute respiratory distress syndrome (ARDS), often treated by extracorporeal membrane oxygenation (ECMO). During ECMO therapy, anticoagulation is crucial to prevent device-associated thrombosis and device failure, however, it is associated with bleeding complications. In COVID-19, additional pathologies, such as endotheliitis, may further increase the risk of bleeding complications. To assess the frequency of bleeding events, we analyzed data from the German COVID-19 autopsy registry (DeRegCOVID). METHODS: The electronic registry uses a web-based electronic case report form. In November 2021, the registry included N = 1129 confirmed COVID-19 autopsy cases, with data on 63 ECMO autopsy cases and 1066 non-ECMO autopsy cases, contributed from 29 German sites. FINDINGS: The registry data showed that ECMO was used in younger male patients and bleeding events occurred much more frequently in ECMO cases compared to non-ECMO cases (56% and 9%, respectively). Similarly, intracranial bleeding (ICB) was documented in 21% of ECMO cases and 3% of non-ECMO cases and was classified as the immediate or underlying cause of death in 78% of ECMO cases and 37% of non-ECMO cases. In ECMO cases, the three most common immediate causes of death were multi-organ failure, ARDS and ICB, and in non-ECMO cases ARDS, multi-organ failure and pulmonary bacterial ± fungal superinfection, ordered by descending frequency. INTERPRETATION: Our study suggests the potential value of autopsies and a joint interdisciplinary multicenter (national) approach in addressing fatal complications in COVID-19. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-022-03945-x

    Neuronal networks in children with continuous spikes and waves during slow sleep

    Get PDF
    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least >85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and waves during slow sleep and neuropsychological deficits associated with this condition are still poorly understood. Here, we investigated the haemodynamic changes associated with epileptic activity using simultaneous acquisitions of electroencephalography and functional magnetic resonance imaging in 12 children with symptomatic and cryptogenic continuous spikes and waves during slow sleep. We compared the results of magnetic resonance to electric source analysis carried out using a distributed linear inverse solution at two time points of the averaged epileptic spike. All patients demonstrated highly significant spike-related positive (activations) and negative (deactivations) blood oxygenation-level-dependent changes (P < 0.05, family-wise error corrected). The activations involved bilateral perisylvian region and cingulate gyrus in all cases, bilateral frontal cortex in five, bilateral parietal cortex in one and thalamus in five cases. Electrical source analysis demonstrated a similar involvement of the perisylvian brain regions in all patients, independent of the area of spike generation. The spike-related deactivations were found in structures of the default mode network (precuneus, parietal cortex and medial frontal cortex) in all patients and in caudate nucleus in four. Group analyses emphasized the described individual differences. Despite aetiological heterogeneity, patients with continuous spikes and waves during slow sleep were characterized by activation of the similar neuronal network: perisylvian region, insula and cingulate gyrus. Comparison with the electrical source analysis results suggests that the activations correspond to both initiation and propagation pathways. The deactivations in structures of the default mode network are consistent with the concept of epileptiform activity impacting on normal brain function by inducing repetitive interruptions of neurophysiological functio

    Multifocal epilepsy in children is associated with increased long-distance functional connectivity: An explorative EEG-fMRI study

    Get PDF
    Objective: Multifocal epileptic activity is an unfavourable feature of a number of epileptic syndromes (Lennox-Gastaut syndrome, West syndrome, severe focal epilepsies) which suggests an overall vulnerability of the brain to pathological synchronization. However, the mechanisms of multifocal activity are insufficiently understood. This explorative study investigates whether pathological connectivity within brain areas of the default mode network as well as thalamus, brainstem and retrosplenial cortex may predispose individuals to multifocal epileptic activity. Methods: 33 children suffering from multifocal and monofocal (control group) epilepsies were investigated using EEG-fMRI recordings during sleep. The blood oxygenated level dependent (BOLD) signal of 15 regions of interest was extracted and temporally correlated (resting-state functional connectivity). Results: Patients with monofocal epilepsies were characterized by strong correlations between the corresponding interhemispheric homotopic regions. This pattern of correlations with pronounced short-distance and weak long-distance functional connectivity resembles the connectivity pattern described for healthy children. Patients with multifocal epileptic activity, however, demonstrated significantly stronger correlations between a large number of regions of the default mode network as well as thalamus and brainstem, with a significant increase in long-distance connectivity compared to children with monofocal epileptic activity. In the group of patients with multifocal epilepsies there were no differences in functional connectivity between patients with or without Lennox-Gastaut syndrome. Conclusion: This explorative study shows that multifocal activity is associated with generally increased long-distance functional connectivity in the brain. It can be suggested that this pronounced connectivity may represent either a risk to pathological over-synchronization or a consequence of the multifocal epileptic activity.Fil: Siniatchkin, Michael. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Moehring, Jan. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Kroeher, Bianca. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Galka, Andreas. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Ondarza, Gisela von. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Moeller, Friederike. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Wolff, Stephan. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Steinmann, Elisabeth. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Boor, Rainer. Christian-Albrechts-UniversitÀt zu Kiel; AlemaniaFil: Stephani, Ulrich. Christian-Albrechts-UniversitÀt zu Kiel; Alemani

    Autopsy registry can facilitate COVID‐19 research

    No full text
    The WHO declared the global outbreak of SARS‐CoV‐2 a pandemic on March 11, 2020, and “call(ed) on all countries to exchange country experiences and practices in a transparent and timely way” (http://www.euro.who.int/en/health-topics/health-emergencies/pages/news/news/2020/03/who-announces-covid-19-outbreak-a-pandemic). To date, many medical societies have announced their intention to collect and analyze data from COVID‐19 patients and some large‐scale prospective data collections are already running, such as the LEOSS registry (Lean European Open Survey on SARS‐CoV‐2 Infected Patients) or the CAPACITYCOVID registry (registry of patients with COVID‐19 including cardiovascular risk and complications). The necessity to mobilize and harmonize basic and applied research worldwide is of utmost importance (Sansonetti, 2020)

    Altered information processing in children with focal epilepsies with and without intellectual disability

    Get PDF
    The aim of this exploratory study was to investigate the relationship between focal interictal epileptiform discharges (IEDs), intellectual disability and cortical information processing in children with partial epilepsy. Two groups of patients – Group 1 (n = 9 patients) with focal IEDs and normal IQ and Group 2 (n = 10 patients) with focal IEDs and intellectual disability – were compared with 14 healthy control participants. A computerized choice reaction time task (go/no-go paradigm) was performed and event-related potentials (ERPs) were recorded. When an IED occurred during the period between the presentation of the stimulus and the response, the response was defined as a response with IED. Omission errors, commission errors and reaction time were evaluated in temporal relationship to IEDs. The Group 1 patients did not differ from the healthy children in neurophysiological functions and ERP amplitudes. The Group 2 children showed inferior Altered information processing in children with focal epilepsies with and without intellectual disability performances in verbal learning and memory, cognitive flexibility and selective attention, and were characterized by low ERP amplitudes compared with the epilepsy patients with normal IQ and the healthy children. We were not able to identify any significant relationship between IEDs and cognitive functions in either group of patients. Our findings suggest that the impact of IEDs on the overall intellectual abilities of epilepsy patients may not be as significant as previously thought. Moreover, it is likely that abnormalities in cognitive information processing as revealed by lower ERP amplitudes, occurrence of IEDs, and intellectual disabilities may represent common abnormal processes and may not be causally related to each other

    Neuronal networks in children with continuous spikes and waves during slow sleep

    No full text
    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least >85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and waves during slow sleep and neuropsychological deficits associated with this condition are still poorly understood. Here, we investigated the haemodynamic changes associated with epileptic activity using simultaneous acquisitions of electroencephalography and functional magnetic resonance imaging in 12 children with symptomatic and cryptogenic continuous spikes and waves during slow sleep. We compared the results of magnetic resonance to electric source analysis carried out using a distributed linear inverse solution at two time points of the averaged epileptic spike. All patients demonstrated highly significant spike-related positive (activations) and negative (deactivations) blood oxygenation-level-dependent changes (P < 0.05, family-wise error corrected). The activations involved bilateral perisylvian region and cingulate gyrus in all cases, bilateral frontal cortex in five, bilateral parietal cortex in one and thalamus in five cases. Electrical source analysis demonstrated a similar involvement of the perisylvian brain regions in all patients, independent of the area of spike generation. The spike-related deactivations were found in structures of the default mode network (precuneus, parietal cortex and medial frontal cortex) in all patients and in caudate nucleus in four. Group analyses emphasized the described individual differences. Despite aetiological heterogeneity, patients with continuous spikes and waves during slow sleep were characterized by activation of the similar neuronal network: perisylvian region, insula and cingulate gyrus. Comparison with the electrical source analysis results suggests that the activations correspond to both initiation and propagation pathways. The deactivations in structures of the default mode network are consistent with the concept of epileptiform activity impacting on normal brain function by inducing repetitive interruptions of neurophysiological function
    corecore